
Transportation Management System Migration Plans and Procedures
Chapter 4: High-Level and Detailed Requirements

Chapter 4:

Define High Level and Detailed Requirements

Purpose of this Chapter
This chapter describes the activities and considerations specific to migration projects that occur during the requirements development phase.
4.1. Requirements Activities Defined
As shown in Figure ‎4‑1, once the key project goals and objectives are described in the concept of operations, requirements can be developed that link to those project goals and objectives. Although the Vee implies a somewhat linear system engineering process, there is likely an interaction between each step that results in “going backwards up the Vee”. In other words, project managers should anticipate that the concept of operations may change based on the requirements development process.
The following provides an overview and definition of the typical activities conducted during the requirements elicitation and definition phase of the systems engineering process. Good resources for requirements development include:

· Developing Functional Requirements for Intelligent Transportation Systems, April 2002. (FHWA-OP-02-046)
· IEEE Standard 1233:1998, IEEE Guide for Developing System Requirements Specifications.(outline for a requirements document is provided in this report, below)
In addition, overall systems engineering advice is available from the International Council on Systems Engineering website (INCOSE.org).

The requirements development process includes eliciting, analyzing and documenting high level requirements, and decomposing the high-level requirements into detailed requirements (with associated analysis and documentation). Elicitation of requirements is the focus of this chapter. Analysis of requirements helps ensure that the requirements are complete and meet the users’ needs. The analysis process is not addressed in this document. The above resources supply additional information on requirements decomposition and analysis.

Documentation is addressed in the chapter on cross-cutting activities under configuration management.
[image: image1.emf]
Figure ‎4‑1: Systems Engineering “V” Diagram
(High Level and Detailed Requirements Step Highlighted)
4.1.1

·
·

Elicit Requirements
Requirements elicitation is often considered the most important step in the systems engineering process. Information gathered during requirements elicitation often has to be interpreted, analyzed, modeled and validated before a complete set of systems requirements is generated.

One of the most important goals of elicitation is to find out what problems need to be solved, and therefore identify system boundaries.
 These boundaries define, at a high level, where the final delivered system will fit into the current operational environment. Identifying and agreeing upon a system’s boundaries affects all subsequent elicitation efforts.
The techniques used to elicit stakeholder needs and requirements include the following:

· Literature search: Review existing documents to develop a background.
· Day-in-the-life studies: Spend time with key stakeholders to document what tasks they perform and how they do them.
· Surveys: Carefully design and administer surveys to collect information and opinions regarding priorities and needs.
· One-on-one interviews. Examine perspectives of individual stakeholders.
· Workshops: Facilitate discussion and consensus by presenting stakeholders with collected information and identified issues.
4.1.2

Define Requirements

Requirements development is a set of activities that will produce requirements for the system and its subsystems. What is a requirement? The definition from the systems engineering standard (EIA 632) is “Something that governs what, how well, and under what conditions a product will achieve a given purpose.” Simply stated, requirements define the functions, performance and environment of the system under development to a level that can be built. There are several types of requirements:
Functional Requirements –What is the System Supposed to Do?

Functional requirements define the specific functionality that must be built into systems and software to allow users to complete desired tasks. These requirements include required inputs, outputs, states, and transformation rules. The functional requirements will eventually be reflected in the system specification.

Performance Requirements – How Well Does the System do its Functions?

Performance requirements specify the minimum performance requirements the system must provide under various operational scenarios. These requirements are generally measured in terms of quantity, quality, coverage, timeliness, or readiness.

Interface Requirements – How Will the Parts of the System Work Together?

Interface requirements are concerned with making the pieces of a system desirably connect and interoperate with other parts of the system and with external systems. Interface requirements also include assuring that system interfaces are able to accept new features.

Enabling Requirements – What Do I Need to Accomplish the Project?

Enabling requirements define other aspects of systems development that are needed but do not show up as part of the final delivered system. Enabling requirements are often overlooked in requirements development process.

· Development – What is needed in terms of a development suite or lab environment? Is there a constraint on the location or time frame for development?
· Testing – What is required to support testing? This is not the actual test requirements; rather, it would indicate conditions for testing such as use of simulators or actual deployment testing.
· Deployment – These requirements define the transition between the old and new systems, and any constraints that affect the actual system deployment.
· Support – What additional support will be needed from the system developers? Will there also need to be testing software, simulators and other systems developed to be delivered with the new system? Will on-going support be needed after deployment?
· Production – These requirements relate to items that are produced in larger quantities, and may address the production environment, qualifications of workers and the like.
· Training – What types of training (live, on-site, on-line) and support materials (manuals) will need to be provided?
· Disposal – How will by-products of development and/or components that are being replaced be disposed of upon completion of the project?
1.
The importance of a well-developed set of requirements for any systems/software project cannot be overstated. Readers are encouraged to review other sources of information on requirements engineering. This guide book does not provide detail on how to develop good requirements. Rather, the reader is referred to other guidance and the FHWA report titled “Developing Functional Requirements for ITS Projects” states that well-written functional requirements should have the following characteristics:

· Necessary – Only the essential parts of the target system should be defined as a detailed requirement. In other words a detailed requirement should not be defined if it is not needed or desired. Likewise, if a critical part of the system is missing, a detailed requirement should be written to compensate for its absence.
· Concise – Detailed requirements should be written so that they are clear, and easy to understand. They should be straight to the point and have enough information so their intent is easy to understand.
· Attainable – Detailed requirements must be feasible. Requirements that are not attainable should not be included in the target system’s design.
· Complete – Detailed requirements should stand on their own, and need not have additional language to make them understandable.
· Consistent – Detailed requirements should not contradict or duplicate language embedded in other detailed requirements. In addition, terms to describe a part of a system should be used similarly throughout the description of the requirement.

· Unambiguous – Detailed requirements should be written in such a manner that reduces the possibility of alternate meanings.

· Verifiable – Once target systems have been implemented, it must be possible to determine whether the requirement has been met.

·
·
·
·
·
·
·
The overall requirements development process begins with high-level requirements that are further decomposed into detailed requirements. The detailed requirements are more precise in describing what the system will provide.
4.2. Application to Migration Projects

The success of an ITS migration project, like any other system/software project, depends significantly on the ability of the migration team to develop the detailed requirements for the target system.

Once again, the analogy of the migration project for a heart patient is useful in understanding the requirements phase of the project.

The surgeon has already worked with the patient to establish the goals and objectives of the heart treatment, high-level alternatives have been explored, and a preferred approach selected. The surgeon will then explore the functional, performance, interface and enabling requirements for the surgery.

As with the concept of operations, the first step in the requirements development process is to assemble the stakeholders. The user group is represented by the patient alone in this analogy. He is supplemented by various other “domain” experts – the anesthesiologist, the internist, the surgical nursing staff, the recovery team, and others as needed depending upon whether the patient’s other systems are of concern - to help in the description of the surgery’s requirements. Not only is the outcome of the surgery addressed, but in the enabling requirements, the actual surgery is also addressed.

Table ‎4‑1 presents some examples of the various types of requirements for the surgery. The development of the requirements requires bringing together the user and “domain” experts – that is, the patient and the medical staff. All of the requirements noted below are high-level (not detailed) requirements, and the list is not comprehensive. Although certainly incomplete, the illustration should be useful to migration concept understanding.
Table ‎4‑1: Examples of Various Types of Requirements
using the Hypothetical Surgery Example
	Functional Requirements
	· The stent shall improve blood flow at the site of the existing obstruction.
· The stent shall not rupture.
· The stent shall not collapse.
· The patient shall not be able to sense any negative difference between his heart system with a stent and his heart system without a stent.
· After healing, the patient will not experience shortness of breath during normal activities.

	Performance Requirements
	· The overall heart system will have an ejection fraction (the amount of blood pumped out of the heart with each beat) of at least 50%.
· The recovery period shall not exceed 3 days.
· The stent will operate without blockage (if the patient follows his drug, exercise and diet regimen) for at least 3 years.

	Interface Requirements

	· Some interface requirements are internal to the heart system:
· The stent shall fuse to healthy veins.
· Some interface requirements relate to systems external to the heart system:
· After healing, the heart with the stent will provide blood circulation throughout the complete venous system.

	Enabling Requirements

	· Development – Will there be any “mock” procedures performed to practice for the surgery?
· Testing – Will the stent be tested prior to installation? How will the stent be tested before closing? How will it be tested after surgery? What is the plan for those tests? What equipment is needed? What are the test criteria?
· Deployment – Will the heart remain functioning during the stent procedure? What are the requirements for the entry site to begin the stent implementation? What are the options if there are other issues discovered during the surgery that affect the goals of the surgery or the patient as a whole (part of the outcome of a risk assessment as described in the Cross-Cutting chapter)?
· Support – Defining the equipment and staff needed to support the surgical procedure. What are the requirements for the surgical room?
· Training – Define a post-operative treatment plan.
· Disposal – How will all the waste products of the surgery be disposed of? Which require special handling? If any item is removed, should it be examined and documented before disposal?
· What are the requirements for the surgical room in terms of sterility, size, lighting, heat/cooling, etc.?

The enabling requirements listed in Table ‎4‑1
·
·
·
·
·

·
·
·

·
·
·
·

are the key requirements that define the surgical process.
·
·
·
·
·
·
·
Note that the surgeon has not yet defined (specified) the size or type of stent. That would be considered a design detail. Also note that there is a contingency plan, in case conditions discovered inside the patient are different from what the testing indicates prior to surgery. This is a key parallel with ITS migration projects, because existing systems can never be fully described or fully understood.
What Is Different About Migration Projects That Affects The Requirements Development Stage?
At this stage of the systems engineering process, it may seem that the defining requirements for an ITS migration can follow that of a new development completely – because the focus of a requirements analysis is on what the target system should do, not how to do it. The ”what” should be the same whether or not there is an existing system – right? In theory, this is correct. However, the following pressures, many of which are encountered in the concept of operations stage (and were described in the previous chapter), come to bear on requirements development.

· A strong focus on technology – or a ready solution is the focus. As noted in chapter 3, there is often a technology solution in the user’s mind when approaching a migration. Sometimes, the functional requirements are developed around a specific manufacturer’s technology. The danger in this approach is that the operations needs, objectives and goals can be overshadowed by the technology.
· A resistance to change, or an apparent inability to think beyond the functions of the legacy system. It is sometimes difficult to determine if issues in envisioning a target system arise from a resistance to change or an in ability to describe the current system. Sometimes users feel ownership in the existing system, including any work-arounds they may have developed to address various problems. The existing system must be understood to ensure that the strengths are preserved while the weaknesses are avoided. And, it is often difficult for users to describe their existing system functionality, because it is simply too obvious to them. Requirements elicitation in these cases poses additional challenges, but the elicitation techniques described in the next section can be helpful in working through such resistance. An example of the difficulties in defining requirements for a migration project is presented below. If the staff didn’t have a DMS system with which to compare, the task would have been much more straightforward.

· Functional requirements for the transition period must also be addressed. The decision regarding the need for parallel system operation (legacy and target system) should have been addressed previously in the concept of operations phase. At this point, the overall cut-over requirements should be outlined including how long parallel systems should be operated (if parallel systems are required), the time period and duration when systems can be out of operation, and the like.

4.3.1

Eliciting Requirements – Considerations for ITS Migration
Requirements elicitation is the process of understanding systems and software to identify requirements. One of the major difficulties in ITS system migration is that there typically is little or no documentation of the existing systems functional requirements from which to start or use as a baseline. The baseline must be somehow reconstructed or “reverse engineered”. The extent to which an entire legacy system is baselined will depend largely on the migration effort. The trade-off between developing a complete system baseline and the target system needs must be understood. The trade-off may not be well understood until the design or even the implementation is underway. The pressure for “push-back” and iteration of the steps in the Vee model is stronger in a migration project than in a new implementation. That is, discoveries made as the requirements, design, implementation and even testing phases are accomplished may result in a need to revisit previous steps, even as far back as the project concept of operations. The project staff must be open to and prepared for the need for such changes. The likelihood that requirements can be considered complete and “frozen” before moving on to the subsequent stages of the system engineering process is never 100 percent. However, the pressure for change is even greater for migration projects simply because there are so many unknowns. This requires an aggressive change management process and approach be implemented, as described in Chapter 8.
The key to all requirements elicitation processes is to maintain focus on the operational needs. The process should allow for free expression of ideas, concerns, constraints and desires. Comments that need to be addressed later in the process can be noted as such. After any extensive elicitation, all requirements should be tied back to operational needs identified in the concept of operations. In systems engineering jargon, this is known as traceability. If some requirements cannot be traced back to identified needs, additional work must be done to determine if they should be discarded, modified or if the needs should be reassessed.

It is important to keep in mind that the overall requirements development process begins with high-level requirements that are further decomposed into detailed requirements. It is generally best if this process of decomposing requirements, or deriving detailed requirements, be done cooperatively between the owner and the developer. This will allow the detailed requirements to be developed with both the knowledge of the desired functionality of the system and the technical approach to be taken in the development. In a migration project, there may be certain detailed requirements that will be known from the outset. These requirements should be included in the initial development of requirements, even though most requirements at that stage will be high-level. There may be a temptation to develop all of the detailed requirements at this stage because the users are familiar with the system they have and the system they want. However, it is extremely important to have the developer’s input in the detailed requirements to make sure that the users aren’t inadvertently creating a more expensive, less functional, or less flexible system.
There are several methods by which requirements may be elicited, and each requires special consideration when working on ITS migrations versus new systems, depending on the migration project needs and complexities. These methods are bulleted below and described in the following sections.

· Revisiting User Needs.
· Observations.
· Using Existing Systems and Documentation.
· Operational Scenarios.
· Prototyping.
Revisiting User Needs

Several meetings should be conducted with users to confirm user’s needs, and to perform requirements walk-throughs. Reaching a common understanding during this phase will be much less costly than if user requirements have to be readdressed after systems and software have been developed. Therefore, it is absolutely critical that practitioners work with users to establish requirements that are clear, concise and correct.
As with any development, it is important to conduct requirement walk-throughs more than once over the course of a project. Typically, a walk-through with stakeholders when high-level requirements are developed is necessary. Then, when detailed requirements are derived or conditions cause several requirements to be in need of change, additional walk-throughs are appropriate.
It has been a common issue in migration projects that, because there is an existing system in place, the ability to describe the requirements of the target system is compromised. This is due to several factors. First, the users of the existing system are so familiar with its functions that they tend to overlook requirements that seem obvious to them. Another common issue is the lack of baseline requirements for the legacy system. Requirements may have to be constructed (reverse engineered) for the legacy system at this stage. Without a baseline of requirements, it is very difficult to understand what must be changed. Last, the existing system may bias some users in that it will constrain their ability to develop a set of target system requirements that operate in a different context. Legacy system users often simply describe their current system when developing target system requirements because it is difficult for them to think “outside the box”, or outside their normal operational context. Their view of what is possible may be constrained by what exists. As a caveat, on the opposite end of the spectrum, users sometimes over-reach technical possibilities when describing what they need from a new system, simply because they have an existing system. They may believe that what seems to them to be a small change, or “tweak” of an existing system would be possible and easy. However, sometimes small changes are very complex and require extensive reworking of interfaces, databases, and other links.

Observations

Systems and software requirements may be elicited through visual observations of operators using legacy systems. In particular, an observation of current processes can lead to suggestions to modify those processes, which would affect target system design. Observations can also identify the type of data used, users, when they use this data, and how it is used. The current processes can be diagramed and suggested changes mapped to these existing processes. Observations of how a system is actually used typically differ from user descriptions. Therefore, some level of observation is typically needed in migration projects.

Using Existing Systems to Elicit Requirements

Baselining the legacy system is a process of documenting its agreed-to current functions and interfaces with other systems. It is only logical to assume that a firm understanding of the legacy system is needed before one can envision what functions the target system will employ, what interfaces it may need, and what actions need to be preformed to implement these functions and interfaces. This includes an understanding of the environments in which the legacy system operates and the equipment that support it. Therefore, it is good practice to baseline legacy system understanding and properties to form the foundation from which target system development can begin. Legacy system properties should be documented in a formal configuration management process so these actions do not have to be repeated and so this understanding can be drawn upon in the future. Properties of legacy systems and software that may be worth preserving include:

· Functional characteristics that are desired.
· Functional characteristics that are not desired. This includes the reasons why characteristics are not desired.
· Non-functional characteristics (i.e., performance, accuracy, reliability, maintainability, etc).
· Legacy system code.
Legacy system understanding is obtained in part through user (i.e., operators, maintainers, and developers) knowledge and experience of the system. Other sources include existing documentation such as operations plans, maintenance plans and logs, system-level architectures, and vendor information. This understanding is critical to the development of the target system for several reasons. First, the legacy system baseline provides the understanding needed to identify system components that are desirable and should be retained, and those that aren’t and can be discarded. Discarding undesirable or unneeded functions or components can reduce the overall cost to develop and implement the target system. Second, the legacy system baseline can be compared to the baseline of a proposed target system to determine the extent of work that needs to be completed to implement the target system.

Error Reports

Error reports may provide insight on aspects of systems that are not working well. They may offer ideas on how to improve existing systems and software so they may be used more efficiently. Staff responsible for troubleshooting problems may also be excellent sources for eliciting system and software requirements. Requirements in these cases may resolve current problems. However, it is important to assess the amount of any rework on a legacy system that will be valuable in the long term.

Prototyping

Prototypes are scaled-down versions of potential solutions that can effectively demonstrate to users how the potential solutions would look and feel if implemented. They are powerful consensus building tools that enable better development of the target system. However, prototypes can be costly. In the context of the requirements elicitation process, prototypes may be used to clarify and complete requirements for more complex or intensive changes.
Prototypes can be used to test potential target system alternatives. Prototypes may be developed to demonstrate what an entire system will look like or just the individual elements that will comprise it. The benefits of prototypes increase with the complexity of systems especially if they involve many users. By developing prototypes of the target system, users can experience different versions of the system, (scaled down) to determine which is best for meeting user and public expectations, while not having to pay for a full-scale system deployment. Prototypes also offer the ability to quickly point out and correct problems with requirements before the target system is full-developed.
Guidelines for developing prototypes include:

· Prototypes should be included in the project scope.
· Schedule time to develop, evaluate, and modify prototypes.
· Don’t try to perfect prototypes beyond what is needed to demonstrate capabilities of the target system.
· Don’t prototype requirements that are well understood.
· Develop realistic system interfaces.
In the context of a migration, prototypes can be very useful if resistance to change must be overcome. A new system’s operations can be clearly demonstrated, and user’s can describe how well various aspects of the new systems meet their needs.
4.3.2

Eliciting Development Requirements
Development requirements are an area where migration projects are somewhat different from new implementations. The following indicates some of the areas where differences may be found.
· Testing – One key issue in the development of testing requirements in a migration project is that sometimes it can be hard to define performance when the interactions and performance of the existing systems are unknown.
· Deployment - Often, migration projects must consider the space needs for deploying systems in parallel with others.
· Training – It may be more difficult to train staff on a migration when they are fully occupied with current assignments. A training approach must be designed that recognizes this.
· Disposal – Various questions should be answered in the disposal requirements including: When will the old system be removed? How long will parallel operation last? Who should dispose of the legacy system? Can it be surplused? Should it be used for parts?

4.3. Mini Cases – Discussion

For each mini-case described in Chapter 1, the following questions are posed:

· Does this step apply to the mini-case?
· If no, why not?
· If yes, what are the possible actions that should be taken?
In all of the cases described below, a critical step is to make sure that the requirements considered support the concept of operations described in the previous chapter. Requirements may be uncovered that do not support any concept described in the concept of operations. If such a requirement is uncovered, then the concept of operations must be revisited to determine if a change is needed.
4.4.1
Field Device Migration: DMS for NTCIP Conformance
The requirements development and management process is critical in any project. In the case of migrating to a standards based system, it may be easy to think that the requirements to meet the standard are fully laid out so that requirements can be simplified or shortcut. This is not the case. The central system ATMS needs a driver that “speaks” the NTCIP language. NTCIP is a standard suite of protocols and the correct configuration for NTCIP must be specified. However, requirements are first and foremost a set of statements that reflect user needs and the concept of operations. These are independent of standards.
In the case of migrating to an NTCIP compliant DMS system, it is important to decide where to make the “cuts” in the existing system. From the perspective of the central system, is it as straightforward as just adding a device driver? Will graphic user interfaces also need to be modified? Will the entire sign control module need to be modified or replaced? Is the central software structured in such a way that it is easier to replace the entire central system than to modify it? Developing a well-structured, comprehensive set of requirements is the first step in this decision-making process.
Elicit Requirements
Although standards should provide more consistency in the statement of detailed requirements, it is important to go through the full requirements elicitation process. It is important that the right level of detail is developed in the requirements. Many standards guides have a compliance matrix included with them. This lists the features that are mandatory and those that are optional to be included. It is important to develop requirements from the stakeholder perspective in order to determine which options are needed. Just because an optional item exists in the standard, does not mean that it should be included in the target system. It is important to conduct a full requirements elicitation process without regard to the standards and then make decisions on how to specify a system that will meet the requirements and will be standards compliant.
It is also important to be familiar with what the standard will support and what it will not support. If a requirement is not supported by the standard, it will be important to determine why that requirement is not supported. Is it because the requirement borders on how the system will operate rather than what it will do? Is it a detailed requirement that can be stated differently and meet the intent? Is the requirement a nice to have feature, but not truly needed? It is very important to include a requirement that is not supported only when absolutely necessary. If the system is built to meet the requirement that the standard doesn’t support, the system will not be fully compliant and may not be fully interoperable with other standard-compliant systems or components.
As with any migration project, thought must be given to what operational states will be required during the transition from the legacy system to the target system. What will be acceptable in the operational state of the system? Will it be acceptable to have any of the signs not controlled by central software at any time over the transition period? For DMS, it might be that either the legacy signs or the new signs can be operated by vendor software on an independent server. In other cases, this may not be acceptable. It is important to elicit the requirements for the operational transition from the old sign system to the new one.
Define Requirements

It is important to understand what is needed in the migration project for the new sign system to interface with legacy elements that will remain. The requirements development process may be somewhat iterative if the decision on where to make the cut changes and new requirements are needed for a different aspect of the legacy system, especially if the legacy system does not have an up-to-date set of requirements. In decomposing high level requirements to detailed requirements, interfaces will need to be more fully understood and considered.
4.4.2
Communications Systems Migration
As mentioned in earlier chapters, this migration was undertaken primarily because the vendor offered a good deal on a technology upgrade, migrating from an Asynchronous Transfer Mode (ATM) backbone to an Ethernet backbone with IP addressable devices. The agency has a value for keeping current with technology and the opportunity (and cost) was too good to pass up. The agency was not going to replace any of the old devices simply to migrate to IP addressing, but was going to change to IP addressable cameras on a new construction project and will specify IP addressable devices on all future projects.
In this case, it is important to keep in mind throughout the requirements process that the communication system is not the end product. The requirements should focus on communication requirements to support current and planned system functionality and how to migrate devices from legacy communication system to the target communication system.

The cut seems to be pretty straightforward – the communication system itself with no changes in central system modules. However, if the idea is to migrate to IP addressable devices, the agency will have to determine if their current software supports IP addressing for field devices. If it doesn’t, more extensive changes (either software or hardware “converters”) will be needed as IP addressable field devices are installed. For the requirements exercise, it is important to make sure these types of questions are answered in the concept of operations and then develop requirements that meet those concepts. The specifics of the design and how to make legacy system communicate with IP addressable devices will be developed later (in the design phase).
Requirements must include full set of data or information transferred along with number of devices and other features that will drive bandwidth and technology needed. Don’t be proscriptive. Be careful about migrating solely for technology.
Elicit Requirements

The requirement elicitation process will need to address the requirements for the communication system itself, but be reflective of the needs of the entire traffic management system. What bandwidth is required? How many devices will the communication system be required to handle? The requirements will also have to reflect the capabilities of the existing fiber plant. What are the requirements for operation during the implementation process and after the new communication system is in place, but before all the field devices are replaced with IP addressable units?
4.4.3
Change in Function: TMC Central Software Migration
As mentioned in previous chapters, the migration of central TMC software is relatively complex. In this case, software for many of the subsystems is being replaced. It is important to develop a full set of requirements for these subsystems and the interfaces to legacy subsystems. If the original system had a set of requirements that were a project deliverable, this task would be less onerous. If the agency has the original requirements and have actively managed and updated the requirements as conditions changed, the requirements development process would be relatively straightforward. However, these two conditions are not often met in today’s legacy ITS systems and a full elicitation of requirements is needed.

Elicit Requirements

Stakeholders from several different groups should be involved in the elicitation process – operators, traffic managers, maintenance personnel, systems administrators, and representatives of other agencies that have interfaces with or are affected by the central system. The elicitation process should produce a thorough listing of the features of the legacy system that must be retained as well as new requirements that are beyond the capabilities of the legacy system.
Once the high level requirements were established, the team compared them to the capabilities of the existing system and found that there were additional modules that were not meeting stakeholder needs, most notably the video system. The owning agency was very interested in using commercial off-the-shelf and other existing software to the maximum extent possible in order to minimize software development costs and time. The team compared the list of requirements to several existing software packages, both integrated traffic management software packages and device specific (e.g., DMS) packages.
This process allowed them to see if there were any packages or combination of packages that would meet all or most of their needs. The benefit of comparing high-level requirements to existing software at this stage is that the agency can determine if their requirements can all be met by existing software, if minor development will be needed to meet their requirements, or if major development will be required to meet their requirements. The agency was trying to determine if eliminating or changing requirements would lead to significant reductions in the amount of development required. They found that by eliminating or changing a few requirements that were not mission critical, they could purchase a new system that would require very little new development. Changes in the existing system would also be somewhat reduced. The team traced these changes back to the Concept of Operations and found that only minimal changes were required in that document to support the requirement changes and that revisions the Concept of Operations would not compromise the overall philosophy or goals of the system.
The agency conducted a requirements walk-through with the original set stakeholders to verify that the revised high-level requirements were appropriate and that they had not missed something in their decision change the requirements.

Define Requirements

The process of deriving detailed requirements from the high-level requirements is generally best done cooperatively with the system provider or developer. In this case, the agency still had two viable options for meeting their requirements – purchase a completely new system, replacing all of their modules, or upgrading only those modules needed to meet the high-level requirements. The decomposition of the high-level requirements into detailed requirements would depend on which approach the agency selected. If the new system was purchased, then detailed requirements would largely come from the vendor and new detailed requirements would only be developed where new code was needed and to cover implementation issues, such as the transition from the legacy system to the target system. However, if the legacy software was going to be updated, detailed requirements would need to be derived for all changes in the software. At this point, the agency charged the consultant/integrator team with assessing the two options to see which was most effective.
The results of the assessment were that replacement of the entire central software system was more cost effective, provided more flexibility to the agency, and would allow the software to be easily upgraded when the vendor released new versions. The agency decided to replace their central software. There were minor modifications that they wanted in the incident management and video modules. They went through their procurement process and conducted a requirements walk-through with the selected contractor. Detailed requirements were derived for the changes that would be needed to the vendor’s software.

Example of a Functional Requirement:

Based on the user’s security level, the control option shall provide the user with the appropriate level of control.

Example of a Performance Requirement:

The RLCS shall receive device status information from devices sensors within 2 seconds of the status information being issued by the device sensor.

Example of an Interface Requirement:

The center-to-center systems shall utilize the TMDD standard (including message sets) to transmit information.

During the development of requirements for the TxDOT Statewide Dynamic Message Sign subsystem, it became obvious the subtleties in operations had been internalized by the stakeholders participating in the requirements elicitation process. These stakeholders had been operating dynamic message signs for several years and the implied operational assumptions and constraints of these different systems had become second-nature to them and extremely difficult to describe unless asked detailed questions regarding the operations of these signs.

The Caltrans District 11 I-15 Reversible Lane Control System project identified the need for a cut-over system whereby the new system would be deployed in parallel with the operation of the current system. The target system would become operational only when certain cut-over procedures and safeguards had been implemented. This cut-over requirement generated the need for the development of a cut-over plan in which the necessary setup and procedures for the cut-over were described.

Example of Enabling Requirements:

New controllers in the production environment must be installed in parallel with the existing RLCS controllers. The new RLCS will be implemented without first disconnecting the existing/old RLCS. The deployment of this system shall not interfere with the operation of the existing RLCS. Parallel wiring and a switching mechanism will be provided by the Department of Transportation between old and new cabinets which will allow the new system to be switched on for testing purposes, and off for resumption of operating schedules with the old system until the new system is ready for production.

Acceptance testing shall be performed independently for each software component.

The software shall be deployed and managed within the RTC information technology computing facility.

Training on the daily operations and maintenance of the system shall be provided to the RTC prior to the start of acceptance testing and a refresher training following 90 days of continuous operations.

Several requirements review meetings were held with all stakeholders during the development of the TxDOT DalTrans TMC System requirements. These meetings spanned several months and included discussions on Market Packages from the NITS Architecture, use cases developed based on operational scenarios, and specific requirements based on experiences with the existing systems. The original requirements were not well documented and sometimes only existed in email conversations between the developers and the system managers. By taking the time to meet with the different stakeholders and potential users of the system, TxDOT was able to create a complete set of requirements defining the needs of the new TMC system.

During the initial requirements elicitation and analysis for the Caltrans District 11 I-15 Reversible Lane Control System Project, the operators of the current system were interviewed during actual system operation. These interviews and the operations of the current system were filmed as a way to capture this information for later analysis.

For the Regional Transportation Commission of Southern Nevada, using the existing GIS-based Construction Project Conflict Avoidance System as guidance was key to capturing the stakeholders’ ‘likes’ and ‘dislikes’ during the development of the functional requirements for an upgraded system. The actual software system and documentation were used by the team with further information garnered through interviews with key users.

When the TransGuide TMC system was migrated from the original DEC platform to a SUN Unix platform, prototypes were used to show the operators the expected user interface elements and how these elements would interoperate with the system components. Development staff were on the operational floor with the users of the system during the entire project lifecycle, thus providing almost instantaneous feedback to design ideas shown with these prototypes.

The Caltrans District 11 Reversible Lane Control System Upgrade project is an example of a migration that has deployment and disposal requirements. The existing system currently operates the reversible lane and must stay in place until the new system is proven for operations. This requires cut-over procedures as well as rigorous acceptance testing. Deployment of the system in the existing space, both in the field and in the operations room, is critical with the goal being as little disruption to the current operations as possible. The definition of these requirements early on in the project helped the entire project team understand what would be needed as the project progressed and the new system was deployed.

�A little confusing. Explain better.

�This is not listed in the list above. The list includes “operational scenarios” which is not talked about. Do these somehow relate.

- 1 -
- 6 -
- 5 -

